![]() |
Geothermal EnergyBy Gordon Shaw
|
||
A Near Ideal But Much Underused Source of Renewable Energy. |
|||
Three other powerful resources are hot
dry rock, geopressure brines and magma (molten rock) and although
they have the potential to provide energy the current technologies are
not sufficiently developed to make them commercially viable. It does not
require much imagination to recognise some of the problems. For example
the dry rock must be fractured and liquid forced through the cracks; the
geopressurised liquids are rich in methane and exist at great depths;
the magma is too hot for conventional processes to be used. It should
be possible, eventually, to provide large proportions of our energy requirements
using these sources but that state of affairs is a long way off.
The fifth and more modest resource is the extraction of heat from the ground just under the surface and this is a technique that has been used for ages. It relies on the sun's radiation warming the ground which then behaves as a giant storage medium. Where such heat at low temperatures is available at a shallow depth, a water-circulating scheme with heat pumps can be used to transfer the heat to where it is required. Applications include heating of houses, greenhouses etc but you've got to be lucky to have suitable back garden. As an added feature where heat pumps are used the heat transfer can be used in reverse so providing cooling in summer. This method of heat transfer is not suitable for large scale power generation and since it is dependent on the sun, its applicability is limited in cooler districts. Some installations are available in the UK, although we doubt it would be economical for an individual domestic plot, but may be cost-effective for small community schemes. The environmental pollution caused by geothermal installations is small because there are few emissions. Visually a geothermal site need not be offensive because of its construction which only requires a small profile and can easily be screened, by trees for example. Nevertheless, there can be a few problems caused by solids produced where salts carried up in the water must be disposed of and there have been cases of subsidence due to the drillings. Perhaps the worst scenario is when magma has unexpectedly found its way to the surface through the drillings. None of these drawbacks are insuperable. Successful schemes are in operation around the world and some have been continuously productive for about 100 years, although they tend to be located in specific areas. Fairly obviously, location is dependent on the amount of geothermal activity and its depth, something which is related to the earth's plate tectonics. Countries which have taken advantage of geothermal energy include the US, Italy, Germany, Switzerland, Belgium, Portugal, Iceland, Mexico, Canada and New Zealand. There are many more. The International Geothermal Association has more than 60 members. Even the UK has three experimental sites in Southampton, Cleethorpes and Penryn although we cannot see geothermal energy becoming a large scale contributor of renewable energy here (wind, water and possibly solar being more likely contenders q.v.). Of the developing countries, maybe half of them have the potential to develop geothermal sites In summary: internationally the quantity of geothermal energy is virtually infinite and the environmental benefits are beyond reproach. Set against this are the disadvantages that considerable more Research and Development is needed to take advantage of the buried wealth and even when a commercially viable site is identified the initial investment cost can be a serious deterrent. Maybe if some of the multinationals who have the resources to invest in oil exploration could channel them into geothermal exploration, research and development we might see geothermal energy being tapped on a significant scale. But then we're prejudiced aren't we? |
|
||||||
|